

CA-IS36xx High-performance, 5000-V_{RMS} Reinforced Digital Isolators with Integrated high-efficiency, Low-emissions DC-DC Converter

1 Key Features

- Signal rate: DC to 150 Mbps
- Default output: high and low options
- Precise timing (typical @ 5 V supply)
 - 8 ns propagation delay
 - 1 ns pulse Width distortion
 - 2 ns propagation delay skew
 - 5 ns minimum pulse width
- High CMTI: ±150 kV (typical)
- Tri-state outputs with enable
- Schmitt trigger inputs
- Wide input supply range: 3 V to 5.5 V
- Wide operating temperature range: -55° C to 125 °C
- Integrated high-efficiency DC-DC converter with on-chip transformer
 - Regulated output options: 3.3 V or 5.0 V
 - Soft-start to limit inrush current and overshoot
 - Overload and short-circuit protection
 - Thermal shutdown
- Robust electromagnetic compatibility (EMC)
 - Low emissions
- Robust isolation barrier:
 - Isolation rating up to 5.0 kV_{RMS}
 - Isolation Barrier Life: > 40 Years
- RoHS-Compliant Packages
- SOIC16 Wide Body

2 Applications

- Industrial automation systems
- Motor control
- Medical equipment
- Test and measurement
- Isolated ADC, DAC

3 Description

The CA-IS36xx is a family of high-performance reinforced digital isolators with an integrated isolated DC-DC converter. The CA-IS36xx eliminate the need for a separate, isolated power supply, which results in a small form factor, total isolation solution.

The CA-IS3620/ CA-IS3621/ CA-IS3622 are dual-channel digital isolators. And the CA-IS3640/ CA-IS3641/ CA-IS3642/ CA-IS3643/ CA-IS3644 are quad-channel digital isolators.

The CA-IS3620 device has two channels in the same direction, the CA-IS3621 and CA-IS3622 device has one forward and one reverse-direction channels, as shown in Figure 7-1. The CA-IS3640 device has all four channels in the forward direction, the CA-IS3641 device has three forward and one reverse-direction channels, the CA-IS3642 device has two forward and two reverse-direction channels, the CA-IS3643 device has one forward and three reverse-direction channels, and three reverse-direction channels in the reversed direction, as shown in Figure 7-2. All devices have fail-safe mode option. If the input signal is lost, default output is low for devices with suffix L and high for devices with suffix H.

Device Information

PART NUMBER	PACKAGE	BODY SIZE(NOM)
CA-IS3620,		
CA-IS3621,		
CA-IS3622,		
CA-IS3640,		10.30 mm × 7.50 mm
CA-IS3641,	SOIC16-WB(W)	
CA-IS3642,		
CA-IS3643,		
CA-IS3644		

Simplified Functional Diagram

4 Ordering Guide

Ordering Part Number	Number of Inputs A Side	Number of Inputs B Side	Default Output	Isolation Rating (kV)	Package
CA-IS3620L	2	0	Low	5.0	SOIC16-WB
CA-IS3620H	2	0	High	5.0	SOIC16-WB
CA-IS3621L	1	1	Low	5.0	SOIC16-WB
CA-IS3621H	1	1	High	5.0	SOIC16-WB
CA-IS3622L	0	2	Low	5.0	SOIC16-WB
CA-IS3622H	0	2	High	5.0	SOIC16-WB
CA-IS3640L	4	0	Low	5.0	SOIC16-WB
CA-IS3640H	4	0	High	5.0	SOIC16-WB
CA-IS3641L	3	1	Low	5.0	SOIC16-WB
CA-IS3641H	3	1	High	5.0	SOIC16-WB
CA-IS3642L	2	2	Low	5.0	SOIC16-WB
CA-IS3642H	2	2	High	5.0	SOIC16-WB
CA-IS3643L	1	3	Low	5.0	SOIC16-WB
CA-IS3643H	1	3	High	5.0	SOIC16-WB
CA-IS3644L	0	4	Low	5.0	SOIC16-WB
CA-IS3644H	0	4	High	5.0	SOIC16-WB

Table 4-1 Ordering Guide for Valid Ordering Part Number

5 Name Convention

上海川土微电子有限公司

CA-IS3620, CA-IS3621, CA-IS3622, CA-IS3640, CA-IS3641, CA-IS3642, CA-IS3643, CA-IS3644

Preview

Table of Contents

1	Кеу	Featu	res	1
2	Арр	licatio	ns	1
3	Des	criptio	n	1
4	Ord	ering (Guide	2
5	Nam	ne Cor	vention	2
6	Revi	ision H	listory	3
7	PIN	Descri	ptions and Functions	4
8	Spee	cificati	ons	6
	8.1	Abs	olute Maximum Ratings	6
	8.2	ESD	Ratings	6
	8.3	Rec	ommended Operating Conditions	6
	8.4		rmal Information	
	8.5	Pov	ver Rating	7
	8.6	Insu	lation Specifications	8
	8.7		ety-Related Certifications	
	8.8	Eleo	ctrical Characteristics	9
	-	.8.1	5 V Input, 5 V output	
	8	.8.2	5 V Input, 3.3V Output	10

	8.8	3.3	3.3V Input, 3.3 V Output	10
	8.9	Sup	ply Current Characteristics	11
	8.9).1	5 V Input, 5 V Output	11
	8.9	.2	5 V Input, 3.3 V Output	14
	8.9	.3	3.3 V Input, 3.3 V Output	17
	8.10	Tim	ing Characteristics	20
	8.1	.0.1	5 Input, 5V Output	20
	8.1	.0.2	5 V Input, 3.3 V Output	20
	8.1	.0.3	3.3 V Input, 3.3 V Output	20
9	Paran	neter	Measurement Information	21
9 10			Measurement Information escription	
•		led D		22
•	Detai	led D The	escription	22
•	Detai 10.1	led D The Fun	escription ory of Operation	22 22 22
•	Detai 10.1 10.2 10.3	led D The Fun Dev	escription ory of Operation ctional Block Diagram	22 22 22 23
10	Detai 10.1 10.2 10.3 Appli	led D The Fun Dev catio	escription ory of Operation ctional Block Diagram ice Operation Modes n and Implementation	22 22 22 23 25
10 11	Detai 10.1 10.2 10.3 Appli	led D The Fun Dev catio	escription ory of Operation ctional Block Diagram ice Operation Modes	

6 Revision History

Revision 0: Preview version.

7 PIN Descriptions and Functions

Figure 7-1 CA-IS362x Top View

Table 7-1 CA-IS364x Pin Description and Functions

Name	SOIC16 Pin#	Туре	Description
VDD	1	Supply Input	Side A power supply
GNDA	2	Ground	Side A ground
VI1 / VO1	3	Digital I/O	Side A digital input for CA-IS3620 / CA-IS3621 or output for CA-IS3622
VI2 / VO2	4	Digital I/O	Side A digital input for CA-IS3620 / CA-IS3622 or output for CA-IS3621
NC ¹	5	No Connection	Not Connected
NC	6	No Connection	Not Connected
ENA ²	7	Digital Input	Output enable for side A
GNDA	8	Ground	Side A ground
GNDB	9	Ground	Side B ground
NC	10	No Connection	Not Connected
SEL ³	11	Digital Input	VISO selection pin
NC	12	No Connection	Not Connected
VI2 / VO2	13	Digital I/O	Side B digital input for CA-IS3621 or output for CA-IS3620 / CA-IS3622
VI1 / VO1	14	Digital I/O	Side B digital input for CA-IS3622 or output for CA-IS3620 / CA-IS3621
GNDB	15	Ground	Side B ground
VISO	16	Supply Output	Isolated output supply voltage determined by SEL pin

1. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.

2. Enable input ENA can be used for multiplexing, for clock sync, or other output control. ENA logic operation is summarized for each isolator product in Table 10-3. This input is internally pulled-up to local VDD allowing them to be connected to an external logic level (high or low) or left floating. To minimize noise coupling, do not connect circuit traces to ENA if it is left floating. If ENA is unused, it is recommended to be connected to an external logic level, especially for the CA-IS362x operating in a noisy environment.

3. VISO selection pin. VISO = 5 V when SEL is connected to VISO. VISO = 3.3 V, when SEL is connected to GNDA or left floating. SEL operation is summarized in Table 10-1.

Figure 7-2 CA-IS364x Top View

Table 7-2 CA-IS364x Pin Description and Functions

Name	SOIC16 Pin#	Туре	Description	
VDD	1	Supply Input	Side A power supply	
GNDA	2	Ground	Side A ground	
VI1 / VO1	3	Digital I/O	Side A digital input for CA-IS3640 / CA-IS3641 / CA-IS3642 / CA-IS3643 or output for CA-IS3644	
VI2 / VO2	4	Digital I/O	Side A digital input for CA-IS3640 / CA-IS3641 / CA-IS3642 or output for CA-IS3643 / CA-IS3644	
VI3 / VO3	5	Digital I/O	Side A digital input for CA-IS3640 / CA-IS3641 or output for CA-IS3642 / CA-IS3643 / CA-IS3644	
VI4 / VO4	6	Digital I/O	Side A digital input for CA-IS3640 or output for CA-IS3641 / CA-IS3642 / CA-IS3643 / CA-IS3644	
NC ¹	7	No Connection	Not Connected	
GNDA	8	Ground	Side A ground	
GNDB	9	Ground	Side A ground Side B ground	
SEL ²	10	Digital Input	VISO selection pin	
VI4 / VO4	11	Digital I/O	Side B digital input for CA-IS3641 / CA-IS3642 / CA-IS3643 / CA-IS3644 or output for CA-IS3640	
VI3 / VO3	12	Digital I/O	Side B digital input for CA-IS3642 / CA-IS3643 / CA-IS3644 or output for CA-IS3640 / CA-IS3641	
VI2 / VO2	13	Digital I/O	Side B digital input for CA-IS3643 / CA-IS3644 or output for CA-IS3640 / CA-IS3641 / CA-IS3642	
VI1 / VO1	14	Digital I/O	Side B digital input for CA-IS3644 or output for CA-IS3640 / CA-IS3641 / CA-IS3642 / CA-IS3643	
GNDB	15	Ground	Side B ground	
VISO	16	Supply Output	Isolated output supply voltage determined by SEL pin	
1. No Conn	ect. These pins a	are not internally co	onnected. They can be left floating, tied to VDD or tied to GND.	

2. VISO selection pin. VISO = 5 V when SEL is connected to VISO. VISO = 3.3 V, when SEL is connected to GNDA or left floating. SEL operation is summarized in Table 10-1.

8 Specifications

8.1 Absolute Maximum Ratings^{1, 2}

		MIN	MAX	UNIT
V _{DD}	Supply voltage	-0.5	6.0	V
V _{ISO}	Isolated supply Voltage	-0.5	6.0	V
V _{in}	Voltage at Ax, Bx, ENx	-0.5	V _{DDA} +0.5 ³	V
I ₀	Output current	-20	20	mA
Tj	Junction temperature		150	°C
T _{STG}	Storage temperature	-65	150	°C

NOTE:

1. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GNDA or GNDB) and are peak voltage values.
- 3. Maximum voltage must not exceed 6 V.

8.2 ESD Ratings

		VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	±2000	V
V _{ESD} Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ²	±1000	v
NOTE:			
1. JEDEC document JEP155 sta	tes that 500-V HBM allows safe manufacturing with a standard ESD control process.		
2 IFDFC doournant IFD1F7 sta	too that 250 V CDM allows cofe manufacturing with a standard ESD control process		

2. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

			MIN	ТҮР	MAX	UNIT
V _{DD}	Supply Voltage		3		5.5	V
		$V_{DDO}^1 = 5V$	-4			
I _{OH}	High-level Output Current	V _{DDO} = 3.3V	-2			mA
		V _{DDO} = 2.5V	-1			
I _{OL}		V _{DDO} = 5V			4	
	Low-level Output Current	V _{DDO} = 3.3V			2	mA
		V _{DDO} = 2.5V			1	
V _{IH}	High-level Input Voltage	·	2.0			V
V _{IL}	Low-level Input Voltage				0.8	V
DR	Data Rate		0		150	Mbps
T _A	Ambient Temperature		-55	27	125	°C
NOTE:			·			
1. V _{DDO}	= Output-side V _{DD}					

上海川土微电子有限公司

Preview

8.4 Thermal Information

	CA-IS36xx	UNIT °C/W
THERMAL METRIC	W (SOIC)	UNIT
	16 Pins	
R _{0JA} Junction-to-ambient thermal resistance	83.4	°C/W

8.5 Power Rating

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
PD	Maximum Power Dissipation				1	W
P _{DA}	Maximum Power Dissipation on Side-A				0.5	W
P _{DB}	Maximum Power Dissipation on Side-B				0.5	W

8.6 **Insulation Specifications**

	PARAMETR	TEST CONDITIONS	VALUE W	UNI
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	8	mm
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	19	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	V
	Material group	According to IEC 60664-1	I	
		Rated mains voltage \leq 300 V _{RMS}	I-IV	
	Overvoltage category per IEC 60664-1	Rated mains voltage \leq 400 V _{RMS}	I-IV	
		Rated mains voltage $\leq 600 V_{RMS}$	1-111	
DIN V VD	E V 0884-11:2017-01 ²			
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	849	V _{PK}
		AC voltage; Time dependent dielectric breakdown (TDDB) Test	600	V _{RM}
VIOWM	Maximum working isolation voltage	DC voltage	849	VDC
VIOTM	Maximum transient isolation voltage	$V_{TEST} = V_{IOTM},$ t = 60 s (qualification); $V_{TEST} = 1.2 \times V_{IOTM},$ t = 1 s (100% production)	7070	V _{PK}
V _{IOSM}	Maximum surge isolation voltage ³	Test method per IEC 60065, 1.2/50 μ s waveform, V _{TEST} = 1.6 × V _{IOSM} (qualification)	6250	V _{PK}
		Method a, After Input/Output safety test subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10$ s Method a, After environmental tests subgroup 1,	≤5	
q _{pd}	Apparent charge ⁴	$V_{ini} = V_{IOTM}, t_{ini} = 60 s;$ $V_{pd(m)} = 1.6 \times V_{IORM}, t_m = 10 s$	≤5	рC
		Method b1, At routine test (100% production) and preconditioning (type test) $V_{ini} = 1.2 \times V_{IOTM}$, $t_{ini} = 1 s$; $V_{pd(m)} = 1.875 \times V_{IORM}$, $t_m = 1 s$	≤5	
CIO	Barrier capacitance, input to output ⁵	$V_{10} = 0.4 \times sin (2\pi ft), f = 1 MHz$	~0.5	рF
		V _{IO} = 500 V, T _A = 25°C	>1012	
R _{IO}	Isolation resistance ⁵	$V_{10} = 500 \text{ V}, \ 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$	>1011	Ω
		V ₁₀ = 500 V at T _s = 150°C	>109	
	Pollution degree		2	
UL 1577	-			
V _{ISO}	Maximum withstanding isolation voltage	$V_{\text{TEST}} = V_{\text{ISO}}$, t = 60 s (qualification), $V_{\text{TEST}} = 1.2 \times V_{\text{ISO}}$, t = 1 s (100% production)	5000	V _{RM}

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care 1. should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

2. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

3. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.

4. Apparent charge is electrical discharge caused by a partial discharge (pd).

All pins on each side of the barrier tied together creating a two-terminal device. 5.

上海川土微电子有限公司

8.7 Safety-Related Certifications

8.7 Salety-Related	Certifications			
VDE(Pending)	CSA(Pending)	UL(Pending)	CQC(Pending)	TUV(Pending)
Certified according to DIN	Certified according to IEC	Recognized under UL	Certified according to	Certified according to EN
V VDE V 0884-11:2017-01	60950-1, IEC 62368-1 and	1577 Component	GB4943.1-2011	61010-1:2010 (3rd Ed)
	IEC 60601-1	Recognition Program		and EN 60950-
				1:2006/A2:2013

8.8 Electrical Characteristics

8.8.1 5 V Input, 5 V output

$V_{\text{DD}}\text{=}$ 5 V \pm 10%, T_{A} = -55 to 125°C, SEL shorted to V_{ISO}

ply voltage	External I _{ISO} = 0 to 50 mA	4.75	-		
pry voltage		4.75	5.07	5.43	v
	External I _{ISO} = 0 to 130 mA	4.5	5.07	5.43	v
lation	I_{ISO} = 50 mA, V_{DD} = 4.5 V to 5.5 V		2		mV/V
ulation	I _{ISO} = 0 to 130 mA		1%		
maximum load current	$I_{ISO} = 130 \text{ mA}, C_{LOAD} = 0.1 \mu\text{F} \mid\mid 10 \mu\text{F};$ $V_{I} = V_{DDI}^{1} (CA-IS36xxL); V_{I} = 0 V (CA-IS36xxH)$		53%		
oltage threshold when ge is rising				2.7	v
oltage threshold when ge is falling		2.1			V
oltage threshold hysteresis			0.2		V
ng input threshold		1.4	1.67	1.9	V
ing input threshold		1.0	1.23	1.4	V
old hysteresis		0.30	0.44	0.50	V
nput leakage current	$V_{IH} = V_{DDI}^{1}$ at Ax or Bx or ENx or SEL			15	μΑ
put leakage current	V _{IL} = 0 V at Ax or Bx or ENx or SEL	-15			μΑ
utput voltage	I _{OH} = -4mA; <i>See Figure 9-1</i>	V _{DD0} ¹ -0.4	V _{DDO} -0.2		V
utput voltage	I _{OL} = 4mA; <i>See Figure 9-1</i>		0.2	0.4	V
ode transient immunity	$V_{I} = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1500$ V; See Figure 9-2	100	150		kV/μS
rom supply under short	V _{ISO} shorted to GNDB		137		mA
le on isolated supply (pk-pk)			100		mV
sc	e on isolated supply (pk-pk)	V _{ISO} shorted to GNDB	e on isolated supply (pk-pk)	e on isolated supply (pk-pk) 137	e on isolated supply (pk-pk) 137

CA-IS3640, CA-IS3641, CA-IS3642, CA-IS3643, CA-IS3644

8.8.2 5 V Input, 3.3V Output

 V_{DD} = 5 V ± 10%, T_A = -55 to 125°C, SEL shorted to GNDB

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
V	Isolated supply voltage	External I _{ISO} = 0 to 50 mA	3.13	3.34	3.56	v
V _{ISO}	Isolated supply voltage	External I _{ISO} = 0 to 130 mA	3	3.34	3.56	v
VISO(LINE)	DC line regulation	I _{ISO} = 50 mA, V _{DD} = 4.5 V to 5.5 V		2		mV/V
VISO(LOAD)	DC load regulation	I _{ISO} = 0 to 130 mA		1%		
EFF	Efficiency at maximum load current	$I_{ISO} = 130 \text{ mA}, C_{LOAD} = 0.1 \mu\text{F} \mid\mid 10 \mu\text{F};$		400/		
		$V_{I} = V_{DDI}^{1}$ (CA-IS36xxL); $V_{I} = 0 V$ (CA-IS36xxH)		48%		
V _{DD(UVLO+)}	VDD undervoltage threshold when				2.7	v
	supply voltage is rising				2.7	v
V _{DD(UVLO-)}	VDD undervoltage threshold when		2.1			v
	supply voltage is falling		2.1			v
V _{HYS(UVLO)}	VDD undervoltage threshold hysteresis			0.2		V
V _{IT+(IN)}	Positive-going input threshold		1.4	1.67	1.9	V
V _{IT-(IN)}	Negative-going input threshold		1.0	1.23	1.4	V
V _{I(HYS)}	Input threshold hysteresis		0.30	0.44	0.50	V
I _{IH}	High-level input leakage current	$V_{IH} = V_{DDI}^{1}$ at Ax or Bx or ENx or SEL			15	μΑ
IIL	Low-level input leakage current	V _{IL} = 0 V at Ax or Bx or ENx or SEL	-15			μΑ
V _{OH}	High-level output voltage	I _{OH} = -4mA; <i>See Figure 9-1</i>	V _{DDO} ¹ -0.4	V _{DDO} -0.2		V
V _{OL}	Low-level output voltage	I _{OL} = 4mA; <i>See Figure 9-1</i>		0.2	0.4	V
CMTI	Common-mode transient immunity	$V_{I} = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1500$ V; See Figure 9-2	100	150		kV/μS
I _{SCC_SC}	DC current from supply under short	V shorted to CNDD		137		
	circuit on V _{ISO}	V _{ISO} shorted to GNDB		137		mA
V _{ISO(RIP)}	Output ripple on isolated supply (pk-pk)			100		mV
Note:			•			•
1. V _{DDI}	= input side supply; V _{DDO} = output side supp	ly				

8.8.3 3.3V Input, 3.3 V Output

$V_{\text{DD}}\text{=}$ 3.3 V \pm 10%, T_{A} = -55 to 125°C, SEL shorted to GNDB

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
V	Isolated supply voltage	External I _{ISO} = 0 to 50 mA	3.13	3.34	3.56	v
V _{ISO}	Isolated supply voltage	External I _{ISO} = 0 to 130 mA	3	3.34	3.56	v
VISO(LINE)	DC line regulation	I_{ISO} = 50 mA, V_{DD} = 4.5 V to 5.5 V		2		mV/V
VISO(LOAD)	DC load regulation	I _{ISO} = 0 to 130 mA		1%		
EFF	Efficiency at maximum load current	$I_{ISO} = 130 \text{ mA}, C_{LOAD} = 0.1 \ \mu\text{F} \mid\mid 10 \ \mu\text{F};$		47%		
		$V_{I} = V_{DDI}^{1}$ (CA-IS36xxL); $V_{I} = 0 V$ (CA-IS36xxH)		47%		
V _{DD(UVLO+)}	VDD undervoltage threshold when				2.7	v
	supply voltage is rising			2.7	v	
V _{DD(UVLO-)}	VDD undervoltage threshold when		2.1			v
	supply voltage is falling		2.1			v
V _{HYS(UVLO)}	VDD undervoltage threshold hysteresis			0.2		V
V _{IT+(IN)}	Positive-going input threshold		1.4	1.67	1.9	V
V _{IT-(IN)}	Negative-going input threshold		1.0	1.23	1.4	V
V _{I(HYS)}	Input threshold hysteresis		0.30	0.44	0.50	V
I _{IH}	High-level input leakage current	$V_{IH} = V_{DDI}^{1}$ at Ax or Bx or ENx or SEL			15	μΑ
IIL	Low-level input leakage current	V _{IL} = 0 V at Ax or Bx or ENx or SEL	-15			μΑ
V _{OH}	High-level output voltage	I _{OH} = -4mA; <i>See Figure 9-1</i>	V _{DDO} ¹ -0.4	V _{DDO} -0.2		V
V _{OL}	Low-level output voltage	I _{OL} = 4mA; <i>See Figure 9-1</i>		0.2	0.4	V
CMTI	Common-mode transient immunity	V _I = V _{DDI} ¹ or 0 V, V _{CM} = 1500 V; <i>See Figure 9-2</i>	100	150		kV/μS
I _{scc_sc}	DC current from supply under short	V shorted to CNDR		143		m۸
	circuit on V _{ISO}	V _{ISO} shorted to GNDB		143		mA
V _{ISO(RIP)}	Output ripple on isolated supply (pk-pk)			90		mV
Note: 1.	V _{DDI} = input side supply; V _{DDO} = output side	supply.				

上海川土微电子有限公司

8.9 Supply Current Characteristics

8.9.1 5 V Input, 5 V Output

 V_{DD} = 5 V ± 10%, T_A = -55 to 125°C, SEL shorted to V_{ISO}

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
CA-IS362	0					
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3620H); $V_I = V_{DDI}^1$ (CA-IS3620L)		21		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3620L); $V_I = V_{DDI}^1$ (CA-IS3620H)		17		
		All channels switching with 50% duty cycle square wave clock		19		
I _{DD}	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		19		mA
	supply	All channels switching with 50% duty cycle square wave clock		20		
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock		33		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		33		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3620H); $V_1 = V_{DD1}^1$ (CA-IS3620L)	127			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3620L); $V_1 = V_{DD1}^1$ (CA-IS3620H)	130			
		All channels switching with 50% duty cycle square wave clock	100			1
IISO(OUT)	Current available to	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	128			m 4
	isolated supply	All channels switching with 50% duty cycle square wave clock	120			– mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	128			
		All channels switching with 50% duty cycle square wave clock	125			1
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	125			
CA-IS362	1					
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3621H); $V_I = V_{DDI}^1$ (CA-IS3621L)		22		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621L); $V_1 = V_{DD1}^1$ (CA-IS3621H)		16		
		All channels switching with 50% duty cycle square wave clock		10		
I _{DD}	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	19			m 4
	supply	All channels switching with 50% duty cycle square wave clock		20		mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock		30		1
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		50		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3621H); $V_I = V_{DDI}^{1}$ (CA-IS3621L)	127			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621L); $V_1 = V_{DD1}^1$ (CA-IS3621H)	130			
		All channels switching with 50% duty cycle square wave clock	400			1
IISO(OUT)	Current available to	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	128			
	isolated supply	All channels switching with 50% duty cycle square wave clock	120			- mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	128			
		All channels switching with 50% duty cycle square wave clock	100			1
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	126			
Note:						•
1. V _{DD}	_I = Input-side V _{DD}					

CA-IS3620, CA-IS3621, CA-IS3622,

CA-IS3640, CA-IS3641, CA-IS3642, CA-IS3643, CA-IS3644

Preview

Supply Current Characteristics Continued (5 V Input, 5 V Output)

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
CA-IS362	22					
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3622H); $V_I = V_{DDI}^1$ (CA-IS3622L)		22		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3622L); $V_I = V_{DDI}^1$ (CA-IS3622H)		16		
		All channels switching with 50% duty cycle square wave clock		19		
I _{DD}	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		19		mA
	supply	All channels switching with 50% duty cycle square wave clock		20		- mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock		20		
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		30		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3622H); $V_1 = V_{DD1}^1$ (CA-IS3622L)	127			
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3622L); $V_{I} = V_{DDI}^{1}$ (CA-IS3622H)	130			
		All channels switching with 50% duty cycle square wave clock				
IISO(OUT)	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	128			
100(001)	isolated supply	All channels switching with 50% duty cycle square wave clock				mA
	·····	input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	128			
		All channels switching with 50% duty cycle square wave clock				_
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	126			
CA-IS364	10					
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3640H); $V_1 = V_{DD1}^1$ (CA-IS3640L)		23		
		No external I_{LOAD} ; $V_1 = 0$ V (CA-IS3640L); $V_1 = V_{DD1}^{-1}$ (CA-IS3640H)		17		_
		All channels switching with 50% duty cycle square wave clock				_
I _{DD}	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		21		
UU	supply	All channels switching with 50% duty cycle square wave clock				mA
	Supply	input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		24		
		All channels switching with 50% duty cycle square wave clock				
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		56		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3640H); $V_1 = V_{DD1}^1$ (CA-IS3640L)	128			
		No external I_{LOAD} , $V_1 = 0.V$ (CA-ISS640L); $V_1 = V_{DD1}^{-1}$ (CA-ISS640L) No external I_{LOAD} ; $V_1 = 0.V$ (CA-ISS640L); $V_1 = V_{DD1}^{-1}$ (CA-ISS640H)				_
			130			
	Current available to	All channels switching with 50% duty cycle square wave clock	128			
I _{ISO(OUT)}	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				mA
	isolated supply	All channels switching with 50% duty cycle square wave clock	127			
		input of 10Mbps; C_L = 15 pF for each channel, no external I _{LOAD} ;				_
		All channels switching with 50% duty cycle square wave clock	111			
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				
CA-IS364	1			22		1
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3641H); $V_{I} = V_{DDI}^{1}$ (CA-IS3641L)		23		_
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3641L); $V_I = V_{DDI}^1$ (CA-IS3641H)		17		
		All channels switching with 50% duty cycle square wave clock		20		
IDD	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				mA
	supply	All channels switching with 50% duty cycle square wave clock		24		
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				
		All channels switching with 50% duty cycle square wave clock		54		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		51		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3641H); $V_I = V_{DDI}^1$ (CA-IS3641L)	128			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3641L); $V_1 = V_{DD1}^1$ (CA-IS3641H)	130			
		All channels switching with 50% duty cycle square wave clock	128			
I _{ISO(OUT)}	Current available to	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	120			m^
	isolated supply	All channels switching with 50% duty cycle square wave clock	127			- mA
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	127			
		All channels switching with 50% duty cycle square wave clock	112			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	112			
Note: 1.	V _{DDI} = Input-side V _{DD}	•	•			

上海川土微电子有限公司

Preview

		ics Continued (5 V Input, 5 V Output)	NAINI	T \/D	8461/	
	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNI
CA-IS3642	2		[24		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3642H); $V_1 = V_{DD1}^1$ (CA-IS3642L)		24		_
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3642L); $V_I = V_{DDI}^1$ (CA-IS3642H)		18		_
		All channels switching with 50% duty cycle square wave clock		21		
DD	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				mA
	supply	All channels switching with 50% duty cycle square wave clock		24		
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				
		All channels switching with 50% duty cycle square wave clock		51		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3642H); $V_I = V_{DDI}^1$ (CA-IS3642L)	126			_
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3642L); $V_{I} = V_{DDI}^{1}$ (CA-IS3642H)	130			
		All channels switching with 50% duty cycle square wave clock	128			
ISO(OUT)	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	120			mA
	isolated supply	All channels switching with 50% duty cycle square wave clock	127			
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	127			
		All channels switching with 50% duty cycle square wave clock	116			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	110			
CA-IS3643	3					
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3643H); $V_1 = V_{DD1}^1$ (CA-IS3643L)		25		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3643L); $V_1 = V_{DD1}^1$ (CA-IS3643H)		17		
		All channels switching with 50% duty cycle square wave clock		24		
I _{DD}	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		21		
	supply	All channels switching with 50% duty cycle square wave clock				mA
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		24		
		All channels switching with 50% duty cycle square wave clock				
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		48		
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3643H); $V_{I} = V_{DDI}^{1}$ (CA-IS3643L)	125			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3643L); $V_1 = V_{DD1}^{-1}$ (CA-IS3643H)	130			-
		All channels switching with 50% duty cycle square wave clock				-
IISO(OUT)	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	127			
150(001)	isolated supply	All channels switching with 50% duty cycle square wave clock				mA
	iserated suppry	input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	126			
		All channels switching with 50% duty cycle square wave clock				-
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	120			
CA-IS3644	1					
CA-15504-	•	No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3644H); $V_{I} = V_{DDI}^{1}$ (CA-IS3644L)		26		
		No external I_{LOAD} , $V_1 = 0.V$ (CA-IS3644L); $V_1 = V_{DD1}^{-1}$ (CA-IS3644L) No external I_{LOAD} ; $V_1 = 0.V$ (CA-IS3644L); $V_1 = V_{DD1}^{-1}$ (CA-IS3644H)		17		-
				17		-
	Comment due on free as	All channels switching with 50% duty cycle square wave clock		22		
IDD	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				mA
	supply	All channels switching with 50% duty cycle square wave clock		24		
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				_
		All channels switching with 50% duty cycle square wave clock		46		
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				
		No external I_{LOAD} ; $V_I = 0 V (CA-IS3644H)$; $V_I = V_{DDI}^1 (CA-IS3644L)$	127			_
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3644L); $V_1 = V_{DD1}^1$ (CA-IS3644H)	130			_
		All channels switching with 50% duty cycle square wave clock	128			
ISO(OUT)	Current available to	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				mA
	isolated supply	All channels switching with 50% duty cycle square wave clock	128			
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	120			
		All channels switching with 50% duty cycle square wave clock	125			1
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	123			1

CA-IS3620, CA-IS3621, CA-IS3622,

CA-IS3640, CA-IS3641, CA-IS3642, CA-IS3643, CA-IS3644

Preview

8.9.2 5 V Input, 3.3 V Output

 V_{DD} = 5 V ± 10%, T_A = -55 to 125°C, SEL shorted to GNDB

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
CA-IS362	0					
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3620H); $V_I = V_{DDI}^1$ (CA-IS3620L)		17		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3620L); $V_I = V_{DDI}^1$ (CA-IS3620H)		14		
		All channels switching with 50% duty cycle square wave clock		16		
I _{DD}	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		10		mA
	supply	All channels switching with 50% duty cycle square wave clock		17		IIIA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		17		
		All channels switching with 50% duty cycle square wave clock		27		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		27		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3620H); $V_1 = V_{DD1}^1$ (CA-IS3620L)	127			
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3620L); $V_I = V_{DDI}^1$ (CA-IS3620H)	130			
	Current available to isolated supply	All channels switching with 50% duty cycle square wave clock	128			
I _{ISO(OUT)}		input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	120			mA
		All channels switching with 50% duty cycle square wave clock	128			IIIA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	120			
		All channels switching with 50% duty cycle square wave clock	126			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	120			
CA-IS362	1					
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621H); $V_1 = V_{DD1}^1$ (CA-IS3621L)		18		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3621L); $V_I = V_{DDI}^1$ (CA-IS3621H)		13		
		All channels switching with 50% duty cycle square wave clock		16		
I _{DD}	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		10		mA
	supply	All channels switching with 50% duty cycle square wave clock		17		IIIA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		17		
		All channels switching with 50% duty cycle square wave clock		24		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		24		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621H); $V_1 = V_{DD1}^1$ (CA-IS3621L)	127			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621L); $V_1 = V_{DD1}^1$ (CA-IS3621H)	130			
		All channels switching with 50% duty cycle square wave clock	128			
I _{ISO(OUT)}	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	120			mA
	isolated supply	All channels switching with 50% duty cycle square wave clock	100			mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	128			
		All channels switching with 50% duty cycle square wave clock	126			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	126			
Note:						
1. VDD	_I = Input-side V _{DD}					

上海川土微电子有限公司

Preview

		cs Continued (5 V Input, 3.3 V Output)	D GLDL	71/0		1.0.00
	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
CA-IS362	2					1
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3622H); $V_I = V_{DDI}^1$ (CA-IS3622L)		18		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3622L); $V_I = V_{DDI}^1$ (CA-IS3622H)		13		_
		All channels switching with 50% duty cycle square wave clock		16		
I _{DD}	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				mA
	supply	All channels switching with 50% duty cycle square wave clock		17		
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		17		
		All channels switching with 50% duty cycle square wave clock		24		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		24		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3622H); $V_1 = V_{DD1}^1$ (CA-IS3622L)	127			
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3622L); $V_I = V_{DDI}^1$ (CA-IS3622H)	130			
		All channels switching with 50% duty cycle square wave clock	170			
ISO(OUT)	Current available to	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	128			
	isolated supply	All channels switching with 50% duty cycle square wave clock	120			- mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	128			
		All channels switching with 50% duty cycle square wave clock	100			
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	126			
CA-IS364	0					
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3640H); $V_1 = V_{DD1}^1$ (CA-IS3640L)		20		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3640L); $V_1 = V_{DD1}^1$ (CA-IS3640H)		15		
		All channels switching with 50% duty cycle square wave clock				
DD	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		17		
.00	supply	All channels switching with 50% duty cycle square wave clock				mA
	56666.y	input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		19		
		All channels switching with 50% duty cycle square wave clock				_
		input of 100Mbps; $C_L = 15$ pF for each channel, no external I _{LOAD} ;		39		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3640H); $V_1 = V_{DD1}^1$ (CA-IS3640L)	128			
		No external I_{LOAD} , $V_1 = 0.V$ (CA-IS3640L); $V_1 = V_{DD1}^{-1}$ (CA-IS3640L) No external I_{LOAD} ; $V_1 = 0.V$ (CA-IS3640L); $V_1 = V_{DD1}^{-1}$ (CA-IS3640H)	128			
		All channels switching with 50% duty cycle square wave clock	150			_
	Current available to		129			
IISO(OUT)		input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				mA
	isolated supply	All channels switching with 50% duty cycle square wave clock	128			
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				
		All channels switching with 50% duty cycle square wave clock	116			
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				
CA-IS364	1					
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3641H); $V_I = V_{DDI}^1$ (CA-IS3641L)		23		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3641L); $V_I = V_{DDI}^1$ (CA-IS3641H)		14		_
		All channels switching with 50% duty cycle square wave clock		17		
DD	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		17		mA
	supply	All channels switching with 50% duty cycle square wave clock		20		
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock		40		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		40		
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3641H); $V_{I} = V_{DDI}^{1}$ (CA-IS3641L)	128			
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3641L); $V_{I} = V_{DDI}^{1}$ (CA-IS3641H)	130			
		All channels switching with 50% duty cycle square wave clock	120]
ISO(OUT)	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	129			
	isolated supply	All channels switching with 50% duty cycle square wave clock	400			- mA
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	128			
		All channels switching with 50% duty cycle square wave clock				1
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	118			
	V _{DDI} = Input-side V _{DD}					-I

CA-IS3620, CA-IS3621, CA-IS3622,

CA-IS3640, CA-IS3641, CA-IS3642, CA-IS3643, CA-IS3644

Preview

Supply Current Characteristics Continued (5 V Input, 3.3 V Output)

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
CA-IS364	2		[20		1
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3642H); $V_I = V_{DDI}^1$ (CA-IS3642L)		20		_
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3642L); $V_I = V_{DDI}^1$ (CA-IS3642H)		15		_
		All channels switching with 50% duty cycle square wave clock		18		
I _{DD}	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				mA
	supply	All channels switching with 50% duty cycle square wave clock		20		
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				_
		All channels switching with 50% duty cycle square wave clock		39		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		55		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3642H); $V_I = V_{DDI}^1$ (CA-IS3642L)	126			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3642L); $V_1 = V_{DD1}^1$ (CA-IS3642H)	130			
		All channels switching with 50% duty cycle square wave clock	128			
I _{ISO(OUT)}	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	120			m۸
	isolated supply	All channels switching with 50% duty cycle square wave clock	107			mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	127			
		All channels switching with 50% duty cycle square wave clock				
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	119			
CA-IS364	3					
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3643H); $V_1 = V_{DD1}^1$ (CA-IS3643L)		20		
		No external I_{LOAD} ; $V_1 = 0 V (CA-IS3643L)$; $V_1 = V_{DD1}^{-1} (CA-IS3643H)$		14		_
		All channels switching with 50% duty cycle square wave clock				_
I _{DD}	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		18		
00	supply	All channels switching with 50% duty cycle square wave clock				mA
	Supply	input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock				-
				39		
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	105			
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3643H); $V_I = V_{DDI}^1$ (CA-IS3643L)	125			_
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3643L); $V_I = V_{DDI}^1$ (CA-IS3643H)	130			_
	A A A A A A A A A A	All channels switching with 50% duty cycle square wave clock	127			
I _{ISO(OUT)}	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				mA
	isolated supply	All channels switching with 50% duty cycle square wave clock	127			
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				
		All channels switching with 50% duty cycle square wave clock	123			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	125			
CA-IS364	4					
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3644H); $V_1 = V_{DD1}^1$ (CA-IS3644L)		21		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3644L); $V_1 = V_{DD1}^1$ (CA-IS3644H)		15		
		All channels switching with 50% duty cycle square wave clock		10		
I _{DD}	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		18		
	supply	All channels switching with 50% duty cycle square wave clock				mA
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock				
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		41		
		No external I_{LOAD} ; $V_1 = 0 V (CA-IS3644H)$; $V_1 = V_{DD1}^1 (CA-IS3644L)$	123			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3644L); $V_1 = V_{DD1}^{-1}$ (CA-IS3644H)	130			_
		All channels switching with 50% duty cycle square wave clock	100			-
	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	126			
I _{ISO(OUT)}		All channels switching with 50% duty cycle square wave clock				mA
	isolated supply		126			
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				-
		All channels switching with 50% duty cycle square wave clock	126			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				

上海川土微电子有限公司

8.9.3 3.3 V Input, 3.3 V Output

 $V_{\text{DD}}\text{=}$ 3.3 V \pm 10%, T_{A} = -55 to 125°C, SEL shorted to GNDB

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
CA-IS3620	0					-
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3620H); $V_I = V_{DDI}^1$ (CA-IS3620L)		24		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3620L); $V_I = V_{DDI}^1$ (CA-IS3620H)		19		
		All channels switching with 50% duty cycle square wave clock		22		
I _{DD}	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		22		mA
	supply	All channels switching with 50% duty cycle square wave clock		22		IIIA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		22		
		All channels switching with 50% duty cycle square wave clock		22		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		22		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3620H); $V_1 = V_{DD1}^1$ (CA-IS3620L)	72			
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3620L); $V_{I} = V_{DDI}^{1}$ (CA-IS3620H)	75			
		All channels switching with 50% duty cycle square wave clock	75			
I _{ISO(OUT)}	Current available to isolated supply	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	/5			
		All channels switching with 50% duty cycle square wave clock	73			- mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	73			
		All channels switching with 50% duty cycle square wave clock	71			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	annel, no external I _{LOAD} ;			
CA-IS362	1					
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621H); $V_1 = V_{DD1}^1$ (CA-IS3621L)		25		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621L); $V_1 = V_{DD1}^1$ (CA-IS3621H)		18		
		All channels switching with 50% duty cycle square wave clock		22		
I _{DD}	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		22		
	supply	All channels switching with 50% duty cycle square wave clock		22		- mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		22		
		All channels switching with 50% duty cycle square wave clock		10		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		19		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621H); $V_1 = V_{DD1}^1$ (CA-IS3621L)	72			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3621L); $V_1 = V_{DD1}^1$ (CA-IS3621H)	75			
		All channels switching with 50% duty cycle square wave clock	75			
I _{ISO(OUT)}	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	75			
	isolated supply	All channels switching with 50% duty cycle square wave clock	70			mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	73			
		All channels switching with 50% duty cycle square wave clock	74			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	71			
Note:						•
1. VDDI	I = Input-side V _{DD}					

CA-IS3620, CA-IS3621, CA-IS3622,

CA-IS3640, CA-IS3641, CA-IS3642, CA-IS3643, CA-IS3644

Preview

Supply Current Characteristics Continued (3.3 V Input, 3.3 V Output)

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
CA-IS362	2		1			1
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3622H); $V_I = V_{DDI}^1$ (CA-IS3622L)		25		-
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3622L); $V_I = V_{DDI}^1$ (CA-IS3622H)		18		-
		All channels switching with 50% duty cycle square wave clock		22		
DD	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				mA
	supply	All channels switching with 50% duty cycle square wave clock		22		
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		22		
		All channels switching with 50% duty cycle square wave clock		19		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		19		
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3622H); $V_{I} = V_{DDI}^{1}$ (CA-IS3622L)	72			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3622L); $V_1 = V_{DD1}^1$ (CA-IS3622H)	75			
		All channels switching with 50% duty cycle square wave clock	75			
I _{ISO(OUT)}	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	75			
. ,	isolated supply	All channels switching with 50% duty cycle square wave clock				mA
	,	input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	73			
		All channels switching with 50% duty cycle square wave clock				1
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	71			
CA-IS364	0		1			I
	•	No external I _{LOAD} ; V _I = 0 V (CA-IS3640H); V _I = V _{DDI} ¹ (CA-IS3640L)		26		
		No external I_{LOAD} ; $V_1 = 0$ V (CA-IS3640L); $V_1 = V_{DD1}^{-1}$ (CA-IS3640H)		20		1
		All channels switching with 50% duty cycle square wave clock		20		-
I	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		23		
DD	supply	All channels switching with 50% duty cycle square wave clock				mA
	Supply	input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		26		
						-
		All channels switching with 50% duty cycle square wave clock		54		
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	70			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3640H); $V_1 = V_{DD1}^1$ (CA-IS3640L)	73			1
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3640L); $V_1 = V_{DD1}^1$ (CA-IS3640H)	75			1
		All channels switching with 50% duty cycle square wave clock	74			
I _{ISO(OUT)}	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				mA
	isolated supply	All channels switching with 50% duty cycle square wave clock	73			
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				
		All channels switching with 50% duty cycle square wave clock	61			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	•=			
CA-IS364	1					
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3641H); $V_I = V_{DDI}^1$ (CA-IS3641L)		23		
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3641L); $V_I = V_{DDI}^1$ (CA-IS3641H)		14		
		All channels switching with 50% duty cycle square wave clock		17		
I _{DD}	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		17		m ^
	supply	All channels switching with 50% duty cycle square wave clock		20		mA
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock		40		
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		40		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3641H); $V_1 = V_{DD1}^1$ (CA-IS3641L)	73			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3641L); $V_1 = V_{DD1}^1$ (CA-IS3641H)	75			
		All channels switching with 50% duty cycle square wave clock				1
ISO(OUT)	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	74			
	isolated supply	All channels switching with 50% duty cycle square wave clock				mA
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	73			
		All channels switching with 50% duty cycle square wave clock				-
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	61			
		$ $ mput of room on so, $c_L = 15$ pr for each channel, no external I_{LOAD} ;				<u> </u>

上海川土微电子有限公司

Preview

upply C	urrent Characterist	ics Continued (3.3 V Input, 3.3 V Output)				
	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
CA-IS364	2					
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3642H); $V_{I} = V_{DDI}^{1}$ (CA-IS3642L)		20		
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3642L); $V_{I} = V_{DDI}^{1}$ (CA-IS3642H)		15		
		All channels switching with 50% duty cycle square wave clock		10		
I _{DD}	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		18		
	supply	All channels switching with 50% duty cycle square wave clock		20		- mA
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock		20		
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		39		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3642H); $V_1 = V_{DD1}^1$ (CA-IS3642L)	73			
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3642L); $V_1 = V_{DD1}^1$ (CA-IS3642H)	75			
		All channels switching with 50% duty cycle square wave clock				
ISO(OUT)	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	73			
130(001)	isolated supply	All channels switching with 50% duty cycle square wave clock				mA
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	72			
		All channels switching with 50% duty cycle square wave clock				1
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	64			
CA-IS364	3					
CA-15504	5	No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3643H); $V_{I} = V_{DDI}^{1}$ (CA-IS3643L)		20		1
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3643L); $V_I = V_{DDI}^{-1}$ (CA-IS3643L) No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3643L); $V_I = V_{DDI}^{-1}$ (CA-IS3643H)		14		1
		All channels switching with 50% duty cycle square wave clock		14		-
	Current duquue fue as			18		
DD	Current drawn from	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				mA
	supply	All channels switching with 50% duty cycle square wave clock		20		
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	-			-
		All channels switching with 50% duty cycle square wave clock		39		
		input of 100Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;				
		No external I_{LOAD} ; $V_I = 0 V (CA-IS3643H)$; $V_I = V_{DDI}^1 (CA-IS3643L)$	70			-
		No external I_{LOAD} ; $V_I = 0 V$ (CA-IS3643L); $V_I = V_{DDI}^1$ (CA-IS3643H)	75			4
		All channels switching with 50% duty cycle square wave clock	72	2		
IISO(OUT)	Current available to	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				mA
	isolated supply	All channels switching with 50% duty cycle square wave clock	72			
		input of 10Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	, 2			
		All channels switching with 50% duty cycle square wave clock	68			
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;	00			
CA-IS364	4					
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3644H); $V_{I} = V_{DDI}^{1}$ (CA-IS3644L)		21		
		No external I_{LOAD} ; $V_{I} = 0 V$ (CA-IS3644L); $V_{I} = V_{DDI}^{1}$ (CA-IS3644H)		15		
		All channels switching with 50% duty cycle square wave clock		10		
DD	Current drawn from	input of 1Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		18		
	supply	All channels switching with 50% duty cycle square wave clock		20		mA
		input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;		20		
		All channels switching with 50% duty cycle square wave clock				
		input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;		41		
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3644H); $V_1 = V_{DD1}^1$ (CA-IS3644L)	68			1
		No external I_{LOAD} ; $V_1 = 0 V$ (CA-IS3644L); $V_1 = V_{DD1}^1$ (CA-IS3644H)	75			1
		All channels switching with 50% duty cycle square wave clock				1
ISO(OUT)	Current available to	input of 1Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	71			
-130(001)	isolated supply	All channels switching with 50% duty cycle square wave clock				mA
	Soluted Supply	input of 10Mbps; $C_L = 15 \text{ pF}$ for each channel, no external I_{LOAD} ;	71			
		All channels switching with 50% duty cycle square wave clock				-
			71			
	V _{DDI} = Input-side V _{DD}	input of 100Mbps; C_L = 15 pF for each channel, no external I_{LOAD} ;				

Preview

8.10 Timing Characteristics

8.10.1 5 Input, 5V Output

$V_{\text{DD}}\text{=}$ 5 V \pm 10%, $T_{\text{A}}\text{=}$ -55 to 125°C, SEL shorted to V_{ISO}

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW _{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	Soo Figuro 0 1	5.0	8.0	13.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 9-1		0.2	4.5	ns
t _{sk(o)}	Channel-to-channel Output Skew Time ¹	Same-direction channels		0.4	2.5	ns
t _{sk(pp)}	Part-to-part Skew Time ²			2.0	4.5	ns
t _r	Output Signal Rise Time	See Figure 9-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 9-1		2.5	4.0	ns

NOTE:

1. t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected and the outputs switching in the same direction while driving identical loads.

2. t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

8.10.2 5 V Input, 3.3 V Output

$V_{\text{DD}}\text{=}$ 5 V \pm 10%, $T_{\text{A}}\text{=}\text{-}55$ to 125°C, SEL shorted to GNDB

	PARAMETER	TEST CONDITIONS	MIN	ΤΥΡ	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW_{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	See Figure 9-1	5.0	8.0	13.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 9-1		0.2	4.5	ns
t _{sk(o)}	Channel-to-channel Output Skew Time ¹	Same-direction channels		0.4	2.5	ns
t _{sk(pp)}	Part-to-part Skew Time ²			2.0	4.5	ns
t _r	Output Signal Rise Time	See Figure 9-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 9-1		2.5	4.0	ns

NOTE:

1. t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected and the outputs switching in the same direction while driving identical loads.

2. t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

8.10.3 3.3 V Input, 3.3 V Output

V_{DD} = 3.3 V ± 10%, T_A = -55 to 125°C, SEL shorted to GNDB

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW_{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	See Figure 9-1	5.0	8.0	13.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 9-1		0.2	4.5	ns
t _{sk(o)}	Channel-to-channel Output Skew Time ¹	Same-direction channels		0.4	2.5	ns
t _{sk(pp)}	Part-to-part Skew Time ²			2.0	4.5	ns
t _r	Output Signal Rise Time	See Figure 9-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 9-1		2.5	4.0	ns

NOTE:

1. t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected and the outputs switching in the same direction while driving identical loads.

2. t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

上海川土微电子有限公司

9 Parameter Measurement Information

NOTE:

- 1. A square wave generator generate the V_{IN} input signal with the following constraints: waveform frequency \leq 100kHz, 50% duty cycle, t_r \leq 3ns, t_f \leq 3ns. Since the waveform generator has an output impedance of Z_{out} = 50Ω, the 50Ω resistor in the figure is used for matching. There is no need in the actual application.
- 2. C_L is the load capacitance about 15pF together with the instrumentation capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 9-1 Timing Characteristics Test Circuit and Voltage Waveforms

NOTE:

- 1. The High Voltage Surge Generator generates repetitive high voltage surges with > 1.5kV amplitude and <10ns rise time and fall time to reach common-mode transient noise with > 150kV/µs slew rate.
- 2. C_L is the load capacitance about 15pF together with the instrumentation capacitance.
- 3. Pass-fail criteria: The output must remain stable whenever the high voltage surges come.
- 4. C_{BP} is the 0.1 ~ 1uF bypass capacitance.

Figure 9-2 Common-Mode Transient Immunity Test Circuit

Preview

10 Detailed Description

10.1 Theory of Operation

The CA-IS36xx family of devices has a high-efficiency, low-emissions isolated dc-dc converter, with high-speed isolated data channels. The functional block diagram of CA-IS36xx devices are shown in Figure 10-1.

The dc-to-dc converter section of the CA-IS36xx devices works on principles that are common to most modern power supplies. The devices have a split controller architecture with isolated PWM feedback. V_{DD} power is supplied to an oscillating circuit that switches current into a high-Q on-chip air-core transformer which provide high efficiency and low radiated emissions. The integrated transformer uses thin film polymer as the insulation barrier. Power transferred to the secondary side is rectified and regulated to a value of 3.3 V or 5 V, depending on the setting of the SEL pin. The secondary (V_{ISO}) side controller regulates the output by creating a PWM control signal that is sent to the primary side by a dedicated isolated data channel. The PWM modulates the oscillator circuit to control the power being sent to the secondary side. Feedback allows for significantly higher power and efficiency and ensures low overshoots and undershoots during load transients. Undervoltage lockout (UVLO) with hysteresis is integrated on the V_{DD} and V_{ISO} supplies which ensures robust system performance under noisy conditions. An integrated soft-start mechanism ensures controlled inrush current and avoids any overshoot on the output during power up.

The high-speed isolated data channels use a simple ON-OFF keying (OOK) modulation scheme to transmit signal across the SiO₂ isolation capacitors that provide a robust insulation between two different voltage domain and act as a high frequency signal path between the input and the output. The transmitter (TX) modulates the input signal onto the carrier frequency, that is, TX delivers high frequency signal across the isolation barrier in one input state and delivers no signal across the barrier in the other input state. Then the receiver rebuilds the input signal according to the detected in-band energy. The capacitor-based signal path is fully differential to maximize noise immunity, which is also known as common-mode transient immunity. The capacitively-coupled architecture provides much higher electromagnetic immunity compared to the inductively coupled one. A simplified functional block diagram and conceptual operation waveforms of a single channel is shown in Figure 10-2 and Figure 10-3.

10.2 Functional Block Diagram

Figure 10-2 Functional Block Diagram of a Single Channel

Figure 10-3 Conceptual Operation Waveforms of a Single Channel

10.3 Device Operation Modes

Table 10-1 provides the supply configurations for the CA-IS36x devices.

Table 10-1 Supply Configuration Table¹

SEL INPUT	V _{DD}	V _{ISO}
Shorted to VISO	5 V	5V
Shorted to GNDB or floating	5 V	3.3V
Shorted to GNDB or floating	3.3 V ¹	3.3V ²
Nata		

Note:

1. V_{DD} = 3.3 V, SEL shorted to V_{ISO} (essentially V_{ISO} = 5 V) is not recommended mode of configuration.

2. The SEL pin has a weak pulldown internally. For V_{ISO} = 3.3 V, the SEL pin should be strongly connected to the GNDB pin in noisy system scenarios.

Preview

Table 10-2 provides the operation modes for the CA-IS36xx devices.

Table 10-2 Operation Mode Table¹

V _{DD}	INPUT(Ax/Bx) ²	OUTPUT (Ax/Bx)	OPERATION							
	н	Н	Normal operation mode:							
	L	L	A channel's output follows the input state							
PU	Open	Default	Default output fail-safe mode: If a channel's input is left open, its output goes to the default level. (Low for CA-IS36xxL and high for CA-IS36xxH)							
PD	PD X Undetermined ³									
NOTE:										
1. PU =	1. PU = Powered up (VDD \ge 2.7 V); PD = Powered down (VDD \le 2.1 V); X = Irrelevant; H = High level; L = Low level.									
2. The o										

Table 10-3 provides the Enable input truth table for the CA-IS362x devices.

Table 10-3 Enable Input Truth Table¹

PART NUMBER	ENA ¹	OPERATION								
CA-IS3621	Н	Output A2 enabled and follows the input state.								
CA-155021	L	Output A2 disabled and in high impedance state ³ .								
CA-IS3622	Н	Output A1 enabled and follows the input state.								
CA-135022	L	Output A1 disabled and in high impedance state ³ .								
NOTE										

NOTE:

1. H = high level; L = low level.

2. Enable inputs ENA can be used for multiplexing, for clock sync, or other output control. ENA logic operation is summarized for each isolator product in Table 10-3. This inputs is internally pulled-up to local V_{DD} allowing them to be connected to an external logic level (high or low) or left floating. To minimize noise coupling, do not connect circuit traces to ENA if it is left floating. If ENA is unused, it is recommended to be connected to an external logic level, especially if the CA-IS362x is operating in a noisy environment.

3. If a channel's output is in high impedance state, it goes to the default level. Low for CA-IS36xxL and high for CA-IS36xxH.

上海川土微电子有限公司

11 Application and Implementation

The devices require only external bypass capacitors to operate. These low-ESR ceramic bypass capacitors must be placed as close to the chip pads as possible. Figure 11-1 shows the typical application of CA-IS3642 device. And Figure 11-2 shows the typical schematic for SPI isolation using CA-IS3641 device.

Figure 11-1 Typical Application Circuit of CA-IS3642

Figure 11-2 Isolated Power and SPI for ADC Sensing Application with ISOW7841

9.30

Preview

12 Package Information

12.1 16-Pin Wide Body SOIC Package

The figure below illustrates the package details and the recommended land pattern details for the CA-IS364x digital isolator in a 16-pin wide-body SOIC package. The values for the dimensions are shown in millimeters.

RECOMMENDED LAND PATTERN

LEFT-SIDE VIEW

TAPE AND REEL INFORMATION

TAPE DIMENSIONS ф φ -¢ Φ ≥ -÷. Cavity K0 A0 Dimension designed to accommodate the component width B0 Dimension designed to accommodate the component length К0 Dimension designed to accommodate the component thickness W Overall width of the carrier tape Ρ1 Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3620LW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3620HW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3621LW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3621HW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3622LW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3622HW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3640LW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3640HW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3641LW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3641HW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3642LW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3642HW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3643LW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3643HW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3644LW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3644HW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1

IMPORTANT NOTICE

The above information is for reference only and is used to assist Chipanalog customers in design and development. Chipanalog reserves the right to change the above information due to technological innovation without prior notice.

Chipanalog products are all factory tested. The customers shall be responsible for self-assessment and determine whether it is applicable for their specific application. Chipanalog's authorization to use the resources is limited to the development of related applications that the Chipanalog products involved in. In addition, the resources shall not be copied or displayed. And Chipanalog shall not be liable for any claim, cost, and loss arising from the use of the resources.

Trademark Information

Chipanalog Inc. [®], Chipanalog[®] are trademarks or registered trademarks of Chipanalog.

http://www.chipanalog.com